Project ID: plumID:22.002
Source: OAH-G4/plumed.dat
Originally used with PLUMED version: 2.6
Stable: zipped raw stdout - zipped raw stderr - stderr
Master: zipped raw stdout - zipped raw stderr - stderr

Click on the labels of the actions for more information on what each action computes
tested onv2.9
tested onmaster
tested on master
# vim:ft=plumed
Enables syntax highlighting for PLUMED files in vim. See here for more details.
#RESTART
LOAD
Loads a library, possibly defining new actions. More details
FILE
file to be loaded
=GAMBES_log_static_few.cpp #GAMBES_log.cpp #LOAD FILE=GAMBES_test1.cpp #LIGAND/HOST CAL:
GROUP
Define a group of atoms so that a particular list of atoms can be referenced with a single label in definitions of CVs or virtual atoms. More details
ATOMS
the numerical indexes for the set of atoms in the group
=29-212
#GUEST GC:
GROUP
Define a group of atoms so that a particular list of atoms can be referenced with a single label in definitions of CVs or virtual atoms. More details
ATOMS
the numerical indexes for the set of atoms in the group
=1-11 GO:
GROUP
Define a group of atoms so that a particular list of atoms can be referenced with a single label in definitions of CVs or virtual atoms. More details
ATOMS
the numerical indexes for the set of atoms in the group
=12-13 GBr:
GROUP
Define a group of atoms so that a particular list of atoms can be referenced with a single label in definitions of CVs or virtual atoms. More details
ATOMS
the numerical indexes for the set of atoms in the group
=14 GSEL:
GROUP
Define a group of atoms so that a particular list of atoms can be referenced with a single label in definitions of CVs or virtual atoms. More details
ATOMS
the numerical indexes for the set of atoms in the group
=2,3,11,14 l1:
GROUP
Define a group of atoms so that a particular list of atoms can be referenced with a single label in definitions of CVs or virtual atoms. More details
ATOMS
the numerical indexes for the set of atoms in the group
=2 l2:
GROUP
Define a group of atoms so that a particular list of atoms can be referenced with a single label in definitions of CVs or virtual atoms. More details
ATOMS
the numerical indexes for the set of atoms in the group
=3 l3:
GROUP
Define a group of atoms so that a particular list of atoms can be referenced with a single label in definitions of CVs or virtual atoms. More details
ATOMS
the numerical indexes for the set of atoms in the group
=11 l4:
GROUP
Define a group of atoms so that a particular list of atoms can be referenced with a single label in definitions of CVs or virtual atoms. More details
ATOMS
the numerical indexes for the set of atoms in the group
=14
#Water WO:
GROUP
Define a group of atoms so that a particular list of atoms can be referenced with a single label in definitions of CVs or virtual atoms. More details
ATOMS
the numerical indexes for the set of atoms in the group
=222-6521:3
WHOLEMOLECULES
This action is used to rebuild molecules that can become split by the periodic boundary conditions. More details
ENTITY0
the atoms that make up a molecule that you wish to align
=CAL
FIT_TO_TEMPLATE
This action is used to align a molecule to a template. More details
STRIDE
the frequency with which molecules are reassembled
=1
REFERENCE
a file in pdb format containing the reference structure and the atoms involved in the CV
=conf_template.pdb
TYPE
the manner in which RMSD alignment is performed
=OPTIMAL lig:
CENTER
Calculate the center for a group of atoms, with arbitrary weights. More details
ATOMS
the group of atoms that you are calculating the Gyration Tensor for
=GC #check pock:
CENTER
Calculate the center for a group of atoms, with arbitrary weights. More details
ATOMS
the group of atoms that you are calculating the Gyration Tensor for
=29-68 ##DISTANCE ATOMS=pock,lig LABEL=d1 COMPONENTS
v1:
FIXEDATOM
Add a virtual atom in a fixed position. More details
AT
coordinates of the virtual atom
=2.0136,2.0136,2.0 v2:
FIXEDATOM
Add a virtual atom in a fixed position. More details
AT
coordinates of the virtual atom
=2.0136,2.0136,2.25 v3:
FIXEDATOM
Add a virtual atom in a fixed position. More details
AT
coordinates of the virtual atom
=2.0136,2.0136,2.5 v4:
FIXEDATOM
Add a virtual atom in a fixed position. More details
AT
coordinates of the virtual atom
=2.0136,2.0136,2.75 v5:
FIXEDATOM
Add a virtual atom in a fixed position. More details
AT
coordinates of the virtual atom
=2.0136,2.0136,3.0 v6:
FIXEDATOM
Add a virtual atom in a fixed position. More details
AT
coordinates of the virtual atom
=2.0136,2.0136,3.25 v7:
FIXEDATOM
Add a virtual atom in a fixed position. More details
AT
coordinates of the virtual atom
=2.0136,2.0136,3.5 v8:
FIXEDATOM
Add a virtual atom in a fixed position. More details
AT
coordinates of the virtual atom
=2.0136,2.0136,3.75 VIRT:
GROUP
Define a group of atoms so that a particular list of atoms can be referenced with a single label in definitions of CVs or virtual atoms. More details
ATOMS
the numerical indexes for the set of atoms in the group
=v1,v2,v3,v4,v5,v6,v7,v8
cyl:
DISTANCE
Calculate the distance between a pair of atoms. More details
ATOMS
the pair of atom that we are calculating the distance between
=v1,lig
COMPONENTS
calculate the x, y and z components of the distance separately and store them as label
#NEW DISTANCE
cswo1:
COORDINATION
Calculate coordination numbers. More details
GROUPA
First list of atoms
=l1
GROUPB
Second list of atoms (if empty, N*(N-1)/2 pairs in GROUPA are counted)
=WO
SWITCH
This keyword is used if you want to employ an alternative to the continuous switching function defined above
={RATIONAL D_0=0.0 R_0=0.25 NN=6 MM=10 D_MAX=1.0 NOSTRETCH}
NLIST
Use a neighbor list to speed up the calculation
NL_CUTOFF
The cutoff for the neighbor list
=1.4
NL_STRIDE
The frequency with which we are updating the atoms in the neighbor list
=5 cswo2:
COORDINATION
Calculate coordination numbers. More details
GROUPA
First list of atoms
=l2
GROUPB
Second list of atoms (if empty, N*(N-1)/2 pairs in GROUPA are counted)
=WO
SWITCH
This keyword is used if you want to employ an alternative to the continuous switching function defined above
={RATIONAL D_0=0.0 R_0=0.25 NN=6 MM=10 D_MAX=1.0 NOSTRETCH}
NLIST
Use a neighbor list to speed up the calculation
NL_CUTOFF
The cutoff for the neighbor list
=1.4
NL_STRIDE
The frequency with which we are updating the atoms in the neighbor list
=5 cswo3:
COORDINATION
Calculate coordination numbers. More details
GROUPA
First list of atoms
=l3
GROUPB
Second list of atoms (if empty, N*(N-1)/2 pairs in GROUPA are counted)
=WO
SWITCH
This keyword is used if you want to employ an alternative to the continuous switching function defined above
={RATIONAL D_0=0.0 R_0=0.25 NN=6 MM=10 D_MAX=1.0 NOSTRETCH}
NLIST
Use a neighbor list to speed up the calculation
NL_CUTOFF
The cutoff for the neighbor list
=1.4
NL_STRIDE
The frequency with which we are updating the atoms in the neighbor list
=5 cswo4:
COORDINATION
Calculate coordination numbers. More details
GROUPA
First list of atoms
=l4
GROUPB
Second list of atoms (if empty, N*(N-1)/2 pairs in GROUPA are counted)
=WO
SWITCH
This keyword is used if you want to employ an alternative to the continuous switching function defined above
={RATIONAL D_0=0.0 R_0=0.25 NN=6 MM=10 D_MAX=1.0 NOSTRETCH}
NLIST
Use a neighbor list to speed up the calculation
NL_CUTOFF
The cutoff for the neighbor list
=1.4
NL_STRIDE
The frequency with which we are updating the atoms in the neighbor list
=5 cvwo1:
COORDINATION
Calculate coordination numbers. More details
GROUPA
First list of atoms
=v1
GROUPB
Second list of atoms (if empty, N*(N-1)/2 pairs in GROUPA are counted)
=WO
SWITCH
This keyword is used if you want to employ an alternative to the continuous switching function defined above
={RATIONAL D_0=0.0 R_0=0.25 NN=2 MM=6 D_MAX=1.0 NOSTRETCH}
NLIST
Use a neighbor list to speed up the calculation
NL_CUTOFF
The cutoff for the neighbor list
=1.4
NL_STRIDE
The frequency with which we are updating the atoms in the neighbor list
=5 cvwo2:
COORDINATION
Calculate coordination numbers. More details
GROUPA
First list of atoms
=v2
GROUPB
Second list of atoms (if empty, N*(N-1)/2 pairs in GROUPA are counted)
=WO
SWITCH
This keyword is used if you want to employ an alternative to the continuous switching function defined above
={RATIONAL D_0=0.0 R_0=0.25 NN=2 MM=6 D_MAX=1.0 NOSTRETCH}
NLIST
Use a neighbor list to speed up the calculation
NL_CUTOFF
The cutoff for the neighbor list
=1.4
NL_STRIDE
The frequency with which we are updating the atoms in the neighbor list
=5 cvwo3:
COORDINATION
Calculate coordination numbers. More details
GROUPA
First list of atoms
=v3
GROUPB
Second list of atoms (if empty, N*(N-1)/2 pairs in GROUPA are counted)
=WO
SWITCH
This keyword is used if you want to employ an alternative to the continuous switching function defined above
={RATIONAL D_0=0.0 R_0=0.25 NN=2 MM=6 D_MAX=1.0 NOSTRETCH}
NLIST
Use a neighbor list to speed up the calculation
NL_CUTOFF
The cutoff for the neighbor list
=1.4
NL_STRIDE
The frequency with which we are updating the atoms in the neighbor list
=5 cvwo4:
COORDINATION
Calculate coordination numbers. More details
GROUPA
First list of atoms
=v4
GROUPB
Second list of atoms (if empty, N*(N-1)/2 pairs in GROUPA are counted)
=WO
SWITCH
This keyword is used if you want to employ an alternative to the continuous switching function defined above
={RATIONAL D_0=0.0 R_0=0.25 NN=2 MM=6 D_MAX=1.0 NOSTRETCH}
NLIST
Use a neighbor list to speed up the calculation
NL_CUTOFF
The cutoff for the neighbor list
=1.4
NL_STRIDE
The frequency with which we are updating the atoms in the neighbor list
=5 cvwo5:
COORDINATION
Calculate coordination numbers. More details
GROUPA
First list of atoms
=v5
GROUPB
Second list of atoms (if empty, N*(N-1)/2 pairs in GROUPA are counted)
=WO
SWITCH
This keyword is used if you want to employ an alternative to the continuous switching function defined above
={RATIONAL D_0=0.0 R_0=0.25 NN=2 MM=6 D_MAX=1.0 NOSTRETCH}
NLIST
Use a neighbor list to speed up the calculation
NL_CUTOFF
The cutoff for the neighbor list
=1.4
NL_STRIDE
The frequency with which we are updating the atoms in the neighbor list
=5 cvwo6:
COORDINATION
Calculate coordination numbers. More details
GROUPA
First list of atoms
=v6
GROUPB
Second list of atoms (if empty, N*(N-1)/2 pairs in GROUPA are counted)
=WO
SWITCH
This keyword is used if you want to employ an alternative to the continuous switching function defined above
={RATIONAL D_0=0.0 R_0=0.25 NN=2 MM=6 D_MAX=1.0 NOSTRETCH}
NLIST
Use a neighbor list to speed up the calculation
NL_CUTOFF
The cutoff for the neighbor list
=1.4
NL_STRIDE
The frequency with which we are updating the atoms in the neighbor list
=5 cvwo7:
COORDINATION
Calculate coordination numbers. More details
GROUPA
First list of atoms
=v7
GROUPB
Second list of atoms (if empty, N*(N-1)/2 pairs in GROUPA are counted)
=WO
SWITCH
This keyword is used if you want to employ an alternative to the continuous switching function defined above
={RATIONAL D_0=0.0 R_0=0.25 NN=2 MM=6 D_MAX=1.0 NOSTRETCH}
NLIST
Use a neighbor list to speed up the calculation
NL_CUTOFF
The cutoff for the neighbor list
=1.4
NL_STRIDE
The frequency with which we are updating the atoms in the neighbor list
=5 cvwo8:
COORDINATION
Calculate coordination numbers. More details
GROUPA
First list of atoms
=v8
GROUPB
Second list of atoms (if empty, N*(N-1)/2 pairs in GROUPA are counted)
=WO
SWITCH
This keyword is used if you want to employ an alternative to the continuous switching function defined above
={RATIONAL D_0=0.0 R_0=0.25 NN=2 MM=6 D_MAX=1.0 NOSTRETCH}
NLIST
Use a neighbor list to speed up the calculation
NL_CUTOFF
The cutoff for the neighbor list
=1.4
NL_STRIDE
The frequency with which we are updating the atoms in the neighbor list
=5
d1:
MATHEVAL
An alias to the ef CUSTOM function. More details
ARG
the input to this function
=cswo1
FUNC
the function you wish to evaluate
=(x/2.5)-1.0
PERIODIC
if the output of your function is periodic then you should specify the periodicity of the function
=NO d2:
MATHEVAL
An alias to the ef CUSTOM function. More details
ARG
the input to this function
=cswo2
FUNC
the function you wish to evaluate
=(x/2.5)-1.0
PERIODIC
if the output of your function is periodic then you should specify the periodicity of the function
=NO d3:
MATHEVAL
An alias to the ef CUSTOM function. More details
ARG
the input to this function
=cswo3
FUNC
the function you wish to evaluate
=(x/2.5)-1.0
PERIODIC
if the output of your function is periodic then you should specify the periodicity of the function
=NO d4:
MATHEVAL
An alias to the ef CUSTOM function. More details
ARG
the input to this function
=cswo4
FUNC
the function you wish to evaluate
=(x/2.5)-1.0
PERIODIC
if the output of your function is periodic then you should specify the periodicity of the function
=NO d5:
MATHEVAL
An alias to the ef CUSTOM function. More details
ARG
the input to this function
=cvwo1
FUNC
the function you wish to evaluate
=(x/2.8)-1.0
PERIODIC
if the output of your function is periodic then you should specify the periodicity of the function
=NO d6:
MATHEVAL
An alias to the ef CUSTOM function. More details
ARG
the input to this function
=cvwo2
FUNC
the function you wish to evaluate
=(x/2.8)-1.0
PERIODIC
if the output of your function is periodic then you should specify the periodicity of the function
=NO d7:
MATHEVAL
An alias to the ef CUSTOM function. More details
ARG
the input to this function
=cvwo3
FUNC
the function you wish to evaluate
=(x/2.8)-1.0
PERIODIC
if the output of your function is periodic then you should specify the periodicity of the function
=NO d8:
MATHEVAL
An alias to the ef CUSTOM function. More details
ARG
the input to this function
=cvwo4
FUNC
the function you wish to evaluate
=(x/2.8)-1.0
PERIODIC
if the output of your function is periodic then you should specify the periodicity of the function
=NO d9:
MATHEVAL
An alias to the ef CUSTOM function. More details
ARG
the input to this function
=cvwo5
FUNC
the function you wish to evaluate
=(x/2.8)-1.0
PERIODIC
if the output of your function is periodic then you should specify the periodicity of the function
=NO d10:
MATHEVAL
An alias to the ef CUSTOM function. More details
ARG
the input to this function
=cvwo6
FUNC
the function you wish to evaluate
=(x/2.8)-1.0
PERIODIC
if the output of your function is periodic then you should specify the periodicity of the function
=NO d11:
MATHEVAL
An alias to the ef CUSTOM function. More details
ARG
the input to this function
=cvwo7
FUNC
the function you wish to evaluate
=(x/2.8)-1.0
PERIODIC
if the output of your function is periodic then you should specify the periodicity of the function
=NO d12:
MATHEVAL
An alias to the ef CUSTOM function. More details
ARG
the input to this function
=cvwo8
FUNC
the function you wish to evaluate
=(x/2.8)-1.0
PERIODIC
if the output of your function is periodic then you should specify the periodicity of the function
=NO ################################
#NEW ANGLE angcalg:
ANGLE
Calculate an angle. More details
ATOMS
the list of atoms involved in this collective variable (either 3 or 4 atoms)
=v3,v5,6,11 sang:
MATHEVAL
An alias to the ef CUSTOM function. More details
ARG
the input to this function
=angcalg
FUNC
the function you wish to evaluate
=sin(x
PERIODIC
if the output of your function is periodic then you should specify the periodicity of the function
=NO cang:
MATHEVAL
An alias to the ef CUSTOM function. More details
ARG
the input to this function
=angcalg
FUNC
the function you wish to evaluate
=cos(x
PERIODIC
if the output of your function is periodic then you should specify the periodicity of the function
=NO
#Funnel radius:
MATHEVAL
An alias to the ef CUSTOM function. More details
ARG
the input to this function
=cyl.x,cyl.y
VAR
the names to give each of the arguments in the function
=x,y
FUNC
the function you wish to evaluate
=sqrt(x*x+y*y
PERIODIC
if the output of your function is periodic then you should specify the periodicity of the function
=NO funnel:
MATHEVAL
An alias to the ef CUSTOM function. More details
ARG
the input to this function
=radius,cyl.z
VAR
the names to give each of the arguments in the function
=r,z
FUNC
the function you wish to evaluate
=(r+1.0*(-1.2+z))*step(-z+1.)+(r-0.2)*step(z-1
PERIODIC
if the output of your function is periodic then you should specify the periodicity of the function
=NO
UPPER_WALLS
Defines a wall for the value of one or more collective variables, More details
AT
the positions of the wall
=0
ARG
the arguments on which the bias is acting
=funnel
KAPPA
the force constant for the wall
=2000.0
LABEL
a label for the action so that its output can be referenced in the input to other actions
=funnelwall
# Wall on distance to prevent the protein breaking
UPPER_WALLS
Defines a wall for the value of one or more collective variables, More details
AT
the positions of the wall
=1.8
ARG
the arguments on which the bias is acting
=cyl.z
KAPPA
the force constant for the wall
=4000.0
EXP
the powers for the walls
=2
LABEL
a label for the action so that its output can be referenced in the input to other actions
=upper_wall
autoA:
PYTORCH_MODEL
Load a PyTorch model compiled with TorchScript. More details
FILE
Filename of the PyTorch compiled model
=modelG4_OAH_UW_OW1a.pt
ARG
the input for this action is the scalar output from one or more other actions
=d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d12 autoB:
PYTORCH_MODEL
Load a PyTorch model compiled with TorchScript. More details
FILE
Filename of the PyTorch compiled model
=modelG4_OAH_UW_OW1b.pt
ARG
the input for this action is the scalar output from one or more other actions
=d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d12 autoC:
PYTORCH_MODEL
Load a PyTorch model compiled with TorchScript. More details
FILE
Filename of the PyTorch compiled model
=modelG4_OAH_UW_OW1c.pt
ARG
the input for this action is the scalar output from one or more other actions
=d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d12
Acube:
MATHEVAL
An alias to the ef CUSTOM function. More details
ARG
the input to this function
=autoA.node-0
FUNC
the function you wish to evaluate
=x+x^3
PERIODIC
if the output of your function is periodic then you should specify the periodicity of the function
=NO Bcube:
MATHEVAL
An alias to the ef CUSTOM function. More details
ARG
the input to this function
=autoB.node-0
FUNC
the function you wish to evaluate
=x+x^3
PERIODIC
if the output of your function is periodic then you should specify the periodicity of the function
=NO Ccube:
MATHEVAL
An alias to the ef CUSTOM function. More details
ARG
the input to this function
=autoC.node-0
FUNC
the function you wish to evaluate
=x+x^3
PERIODIC
if the output of your function is periodic then you should specify the periodicity of the function
=NO
ene:
ENERGY
Calculate the total potential energy of the simulation box. More details

cbhak:
COORDINATION
Calculate coordination numbers. More details
GROUPA
First list of atoms
=v1
GROUPB
Second list of atoms (if empty, N*(N-1)/2 pairs in GROUPA are counted)
=WO
SWITCH
This keyword is used if you want to employ an alternative to the continuous switching function defined above
={RATIONAL D_0=0.0 R_0=0.35 NN=16 MM=32}
NLIST
Use a neighbor list to speed up the calculation
NL_CUTOFF
The cutoff for the neighbor list
=1.0
NL_STRIDE
The frequency with which we are updating the atoms in the neighbor list
=5
################################
GAMBESL
This action is not part of PLUMED and was included by using a LOAD command More details
... LABEL=gambes NSTATES=3 ARG=d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d12,cyl.z PACE=500 FILENAME=nstate BIAS_CUTOFF CUTOFF=110 # STATIC_BIAS_OPTIMIZE # STATIC_FACTORS=1,0.28,-1 STATIC_BIAS STATIC_FACTORS=1,0.28,0.5 ... GAMBESL
# #PRINT ARG=autoA.node-0,autoB.node-0,cvwo2,cyl.z,cvwo3,autoC.node-0,funnelwall.bias,upper_wall.bias,cvwo1,sang,cang,radius,Acube,Bcube,Ccube,cbhak,cswo1,cswo2,cswo3,cswo4,cvwo7,ene STRIDE=250 FILE=COLVARmeta FMT=%8.4f
PRINT
Print quantities to a file. More details
ARG
the input for this action is the scalar output from one or more other actions
STRIDE
the frequency with which the quantities of interest should be output
=250
FILE
the name of the file on which to output these quantities
=COLVAR
FMT
the format that should be used to output real numbers
=%8.4f
PRINT
Print quantities to a file. More details
ARG
the input for this action is the scalar output from one or more other actions
=d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d12,cyl.z,cbhak,ene,gambes.bias
STRIDE
the frequency with which the quantities of interest should be output
=250
FILE
the name of the file on which to output these quantities
=COLVARNN
FMT
the format that should be used to output real numbers
=%8.9f #PRINT ARG=radius,cyl.z STRIDE=250 FILE=COLVARbuca FMT=%8.4f
PRINT
Print quantities to a file. More details
ARG
the input for this action is the scalar output from one or more other actions
=cyl.z,Acube,gambes
STRIDE
the frequency with which the quantities of interest should be output
=250
FILE
the name of the file on which to output these quantities
=col_desc
FMT
the format that should be used to output real numbers
=%8.9f
FLUSH
This command instructs plumed to flush all the open files with a user specified frequency. More details
STRIDE
the frequency with which all the open files should be flushed
=10
ENDPLUMED
Terminate plumed input. More details