Project ID: plumID:25.007
Source: plumed_M5G0.dat
Originally used with PLUMED version: 2.8
Stable: zipped raw stdout - zipped raw stderr - stderr
Master: zipped raw stdout - zipped raw stderr - stderr

Click on the labels of the actions for more information on what each action computes
tested onv2.10
tested onmaster
MOLINFOThis command is used to provide information on the molecules that are present in your system. More details STRUCTUREa file in pdb format containing a reference structure=reference_M5G0.pdb
# selection of torsion angles and rings
#
phi1_2: TORSIONCalculate one or multiple torsional angles. More details ATOMSthe four atoms involved in the torsional angle=@O5-2the O5 atom in residue 2. Click here for more information. ,@C1-2the C1 atom in residue 2. Click here for more information. ,@O4-1the O4 atom in residue 1. Click here for more information. ,@C4-1the C4 atom in residue 1. Click here for more information. 
psi1_2: TORSIONCalculate one or multiple torsional angles. More details ATOMSthe four atoms involved in the torsional angle=@C1-2the C1 atom in residue 2. Click here for more information. ,@O4-1the O4 atom in residue 1. Click here for more information. ,@C4-1the C4 atom in residue 1. Click here for more information. ,@C3-1the C3 atom in residue 1. Click here for more information. 
#
phi2_3: TORSIONCalculate one or multiple torsional angles. More details ATOMSthe four atoms involved in the torsional angle=@O5-3the O5 atom in residue 3. Click here for more information. ,@C1-3the C1 atom in residue 3. Click here for more information. ,@O6-2the O6 atom in residue 2. Click here for more information. ,@C6-2the C6 atom in residue 2. Click here for more information. 
psi2_3: TORSIONCalculate one or multiple torsional angles. More details ATOMSthe four atoms involved in the torsional angle=@C1-3the C1 atom in residue 3. Click here for more information. ,@O6-2the O6 atom in residue 2. Click here for more information. ,@C6-2the C6 atom in residue 2. Click here for more information. ,@C5-2the C5 atom in residue 2. Click here for more information. 
omega2_3: TORSIONCalculate one or multiple torsional angles. More details ATOMSthe four atoms involved in the torsional angle=@O6-2the O6 atom in residue 2. Click here for more information. ,@C6-2the C6 atom in residue 2. Click here for more information. ,@C5-2the C5 atom in residue 2. Click here for more information. ,@O5-2the O5 atom in residue 2. Click here for more information. 
#
phi3_4: TORSIONCalculate one or multiple torsional angles. More details ATOMSthe four atoms involved in the torsional angle=@O5-4the O5 atom in residue 4. Click here for more information. ,@C1-4the C1 atom in residue 4. Click here for more information. ,@O3-3the O3 atom in residue 3. Click here for more information. ,@C3-3the C3 atom in residue 3. Click here for more information. 
psi3_4: TORSIONCalculate one or multiple torsional angles. More details ATOMSthe four atoms involved in the torsional angle=@C1-4the C1 atom in residue 4. Click here for more information. ,@O3-3the O3 atom in residue 3. Click here for more information. ,@C3-3the C3 atom in residue 3. Click here for more information. ,@C2-3the C2 atom in residue 3. Click here for more information. 
#
phi3_5: TORSIONCalculate one or multiple torsional angles. More details ATOMSthe four atoms involved in the torsional angle=@O5-5the O5 atom in residue 5. Click here for more information. ,@C1-5the C1 atom in residue 5. Click here for more information. ,@O6-3the O6 atom in residue 3. Click here for more information. ,@C6-3the C6 atom in residue 3. Click here for more information. 
psi3_5: TORSIONCalculate one or multiple torsional angles. More details ATOMSthe four atoms involved in the torsional angle=@C1-5the C1 atom in residue 5. Click here for more information. ,@O6-3the O6 atom in residue 3. Click here for more information. ,@C6-3the C6 atom in residue 3. Click here for more information. ,@C5-3the C5 atom in residue 3. Click here for more information. 
omega3_5: TORSIONCalculate one or multiple torsional angles. More details ATOMSthe four atoms involved in the torsional angle=@O6-3the O6 atom in residue 3. Click here for more information. ,@C6-3the C6 atom in residue 3. Click here for more information. ,@C5-3the C5 atom in residue 3. Click here for more information. ,@O5-3the O5 atom in residue 3. Click here for more information. 
#
phi2_6: TORSIONCalculate one or multiple torsional angles. More details ATOMSthe four atoms involved in the torsional angle=@O5-6the O5 atom in residue 6. Click here for more information. ,@C1-6the C1 atom in residue 6. Click here for more information. ,@O3-2the O3 atom in residue 2. Click here for more information. ,@C3-2the C3 atom in residue 2. Click here for more information. 
psi2_6: TORSIONCalculate one or multiple torsional angles. More details ATOMSthe four atoms involved in the torsional angle=@C1-6the C1 atom in residue 6. Click here for more information. ,@O3-2the O3 atom in residue 2. Click here for more information. ,@C3-2the C3 atom in residue 2. Click here for more information. ,@C2-2the C2 atom in residue 2. Click here for more information. 
#
phi6_7: TORSIONCalculate one or multiple torsional angles. More details ATOMSthe four atoms involved in the torsional angle=@O5-7the O5 atom in residue 7. Click here for more information. ,@C1-7the C1 atom in residue 7. Click here for more information. ,@O2-6the O2 atom in residue 6. Click here for more information. ,@C2-6the C2 atom in residue 6. Click here for more information. 
psi6_7: TORSIONCalculate one or multiple torsional angles. More details ATOMSthe four atoms involved in the torsional angle=@C1-7the C1 atom in residue 7. Click here for more information. ,@O2-6the O2 atom in residue 6. Click here for more information. ,@C2-6the C2 atom in residue 6. Click here for more information. ,@C1-6the C1 atom in residue 6. Click here for more information. 
#
puck1: PUCKERINGCalculate sugar pseudorotation coordinates. More details ATOMSthe five or six atoms of the sugar ring in the proper order=@O5-1the O5 atom in residue 1. Click here for more information. ,@C1-1the C1 atom in residue 1. Click here for more information. ,@C2-1the C2 atom in residue 1. Click here for more information. ,@C3-1the C3 atom in residue 1. Click here for more information. ,@C4-1the C4 atom in residue 1. Click here for more information. ,@C5-1the C5 atom in residue 1. Click here for more information. 
puck2: PUCKERINGCalculate sugar pseudorotation coordinates. More details ATOMSthe five or six atoms of the sugar ring in the proper order=@O5-2the O5 atom in residue 2. Click here for more information. ,@C1-2the C1 atom in residue 2. Click here for more information. ,@C2-2the C2 atom in residue 2. Click here for more information. ,@C3-2the C3 atom in residue 2. Click here for more information. ,@C4-2the C4 atom in residue 2. Click here for more information. ,@C5-2the C5 atom in residue 2. Click here for more information. 
puck3: PUCKERINGCalculate sugar pseudorotation coordinates. More details ATOMSthe five or six atoms of the sugar ring in the proper order=@O5-3the O5 atom in residue 3. Click here for more information. ,@C1-3the C1 atom in residue 3. Click here for more information. ,@C2-3the C2 atom in residue 3. Click here for more information. ,@C3-3the C3 atom in residue 3. Click here for more information. ,@C4-3the C4 atom in residue 3. Click here for more information. ,@C5-3the C5 atom in residue 3. Click here for more information. 
puck4: PUCKERINGCalculate sugar pseudorotation coordinates. More details ATOMSthe five or six atoms of the sugar ring in the proper order=@O5-4the O5 atom in residue 4. Click here for more information. ,@C1-4the C1 atom in residue 4. Click here for more information. ,@C2-4the C2 atom in residue 4. Click here for more information. ,@C3-4the C3 atom in residue 4. Click here for more information. ,@C4-4the C4 atom in residue 4. Click here for more information. ,@C5-4the C5 atom in residue 4. Click here for more information. 
puck5: PUCKERINGCalculate sugar pseudorotation coordinates. More details ATOMSthe five or six atoms of the sugar ring in the proper order=@O5-5the O5 atom in residue 5. Click here for more information. ,@C1-5the C1 atom in residue 5. Click here for more information. ,@C2-5the C2 atom in residue 5. Click here for more information. ,@C3-5the C3 atom in residue 5. Click here for more information. ,@C4-5the C4 atom in residue 5. Click here for more information. ,@C5-5the C5 atom in residue 5. Click here for more information. 
puck6: PUCKERINGCalculate sugar pseudorotation coordinates. More details ATOMSthe five or six atoms of the sugar ring in the proper order=@O5-6the O5 atom in residue 6. Click here for more information. ,@C1-6the C1 atom in residue 6. Click here for more information. ,@C2-6the C2 atom in residue 6. Click here for more information. ,@C3-6the C3 atom in residue 6. Click here for more information. ,@C4-6the C4 atom in residue 6. Click here for more information. ,@C5-6the C5 atom in residue 6. Click here for more information. 
puck7: PUCKERINGCalculate sugar pseudorotation coordinates. More details ATOMSthe five or six atoms of the sugar ring in the proper order=@O5-7the O5 atom in residue 7. Click here for more information. ,@C1-7the C1 atom in residue 7. Click here for more information. ,@C2-7the C2 atom in residue 7. Click here for more information. ,@C3-7the C3 atom in residue 7. Click here for more information. ,@C4-7the C4 atom in residue 7. Click here for more information. ,@C5-7the C5 atom in residue 7. Click here for more information. 
#
#Metadynamics: HEIGHTS=(k*deltaT*pace*timestep)/tau
#
metaD_phi1_2: METADUsed to performed metadynamics on one or more collective variables. More details ARGthe labels of the scalars on which the bias will act=phi1_2 TAUin well tempered metadynamics, sets height to (k_B Delta T*pace*timestep)/tau=4.0 PACEthe frequency for hill addition=500 SIGMAthe widths of the Gaussian hills=0.35 GRID_MINthe lower bounds for the grid=-pi GRID_MAXthe upper bounds for the grid=pi GRID_BINthe number of bins for the grid=200 TEMPthe system temperature - this is only needed if you are doing well-tempered metadynamics=310.15 RECTlist of bias factors for all the replicas=1,1.2,1.46,1.82,2.3,2.94,3.78,4.89,6.34,8.23,10.7,14 FILE a file in which the list of added hills is stored=HILLS_phi1_2
metaD_psi1_2: METADUsed to performed metadynamics on one or more collective variables. More details ARGthe labels of the scalars on which the bias will act=psi1_2 TAUin well tempered metadynamics, sets height to (k_B Delta T*pace*timestep)/tau=4.0 PACEthe frequency for hill addition=500 SIGMAthe widths of the Gaussian hills=0.35 GRID_MINthe lower bounds for the grid=-pi GRID_MAXthe upper bounds for the grid=pi GRID_BINthe number of bins for the grid=200 TEMPthe system temperature - this is only needed if you are doing well-tempered metadynamics=310.15 RECTlist of bias factors for all the replicas=1,1.2,1.46,1.82,2.3,2.94,3.78,4.89,6.34,8.23,10.7,14 FILE a file in which the list of added hills is stored=HILLS_psi1_2
#
metaD_phi2_3: METADUsed to performed metadynamics on one or more collective variables. More details ARGthe labels of the scalars on which the bias will act=phi2_3 TAUin well tempered metadynamics, sets height to (k_B Delta T*pace*timestep)/tau=4.0 PACEthe frequency for hill addition=500 SIGMAthe widths of the Gaussian hills=0.35 GRID_MINthe lower bounds for the grid=-pi GRID_MAXthe upper bounds for the grid=pi GRID_BINthe number of bins for the grid=200 TEMPthe system temperature - this is only needed if you are doing well-tempered metadynamics=310.15 RECTlist of bias factors for all the replicas=1,1.2,1.46,1.82,2.3,2.94,3.78,4.89,6.34,8.23,10.7,14 FILE a file in which the list of added hills is stored=HILLS_phi2_3
metaD_psi2_3: METADUsed to performed metadynamics on one or more collective variables. More details ARGthe labels of the scalars on which the bias will act=psi2_3 TAUin well tempered metadynamics, sets height to (k_B Delta T*pace*timestep)/tau=4.0 PACEthe frequency for hill addition=500 SIGMAthe widths of the Gaussian hills=0.35 GRID_MINthe lower bounds for the grid=-pi GRID_MAXthe upper bounds for the grid=pi GRID_BINthe number of bins for the grid=200 TEMPthe system temperature - this is only needed if you are doing well-tempered metadynamics=310.15 RECTlist of bias factors for all the replicas=1,1.2,1.46,1.82,2.3,2.94,3.78,4.89,6.34,8.23,10.7,14 FILE a file in which the list of added hills is stored=HILLS_psi2_3
metaD_omega2_3: METADUsed to performed metadynamics on one or more collective variables. More details ARGthe labels of the scalars on which the bias will act=omega2_3 TAUin well tempered metadynamics, sets height to (k_B Delta T*pace*timestep)/tau=4.0 PACEthe frequency for hill addition=500 SIGMAthe widths of the Gaussian hills=0.35 GRID_MINthe lower bounds for the grid=-pi GRID_MAXthe upper bounds for the grid=pi GRID_BINthe number of bins for the grid=200 TEMPthe system temperature - this is only needed if you are doing well-tempered metadynamics=310.15 RECTlist of bias factors for all the replicas=1,1.2,1.46,1.82,2.3,2.94,3.78,4.89,6.34,8.23,10.7,14 FILE a file in which the list of added hills is stored=HILLS_omega2_3
#
metaD_phi3_4: METADUsed to performed metadynamics on one or more collective variables. More details ARGthe labels of the scalars on which the bias will act=phi3_4 TAUin well tempered metadynamics, sets height to (k_B Delta T*pace*timestep)/tau=4.0 PACEthe frequency for hill addition=500 SIGMAthe widths of the Gaussian hills=0.35 GRID_MINthe lower bounds for the grid=-pi GRID_MAXthe upper bounds for the grid=pi GRID_BINthe number of bins for the grid=200 TEMPthe system temperature - this is only needed if you are doing well-tempered metadynamics=310.15 RECTlist of bias factors for all the replicas=1,1.2,1.46,1.82,2.3,2.94,3.78,4.89,6.34,8.23,10.7,14 FILE a file in which the list of added hills is stored=HILLS_phi3_4
metaD_psi3_4: METADUsed to performed metadynamics on one or more collective variables. More details ARGthe labels of the scalars on which the bias will act=psi3_4 TAUin well tempered metadynamics, sets height to (k_B Delta T*pace*timestep)/tau=4.0 PACEthe frequency for hill addition=500 SIGMAthe widths of the Gaussian hills=0.35 GRID_MINthe lower bounds for the grid=-pi GRID_MAXthe upper bounds for the grid=pi GRID_BINthe number of bins for the grid=200 TEMPthe system temperature - this is only needed if you are doing well-tempered metadynamics=310.15 RECTlist of bias factors for all the replicas=1,1.2,1.46,1.82,2.3,2.94,3.78,4.89,6.34,8.23,10.7,14 FILE a file in which the list of added hills is stored=HILLS_psi3_4
#
metaD_phi3_5: METADUsed to performed metadynamics on one or more collective variables. More details ARGthe labels of the scalars on which the bias will act=phi3_5 TAUin well tempered metadynamics, sets height to (k_B Delta T*pace*timestep)/tau=4.0 PACEthe frequency for hill addition=500 SIGMAthe widths of the Gaussian hills=0.35 GRID_MINthe lower bounds for the grid=-pi GRID_MAXthe upper bounds for the grid=pi GRID_BINthe number of bins for the grid=200 TEMPthe system temperature - this is only needed if you are doing well-tempered metadynamics=310.15 RECTlist of bias factors for all the replicas=1,1.2,1.46,1.82,2.3,2.94,3.78,4.89,6.34,8.23,10.7,14 FILE a file in which the list of added hills is stored=HILLS_phi3_5
metaD_psi3_5: METADUsed to performed metadynamics on one or more collective variables. More details ARGthe labels of the scalars on which the bias will act=psi3_5 TAUin well tempered metadynamics, sets height to (k_B Delta T*pace*timestep)/tau=4.0 PACEthe frequency for hill addition=500 SIGMAthe widths of the Gaussian hills=0.35 GRID_MINthe lower bounds for the grid=-pi GRID_MAXthe upper bounds for the grid=pi GRID_BINthe number of bins for the grid=200 TEMPthe system temperature - this is only needed if you are doing well-tempered metadynamics=310.15 RECTlist of bias factors for all the replicas=1,1.2,1.46,1.82,2.3,2.94,3.78,4.89,6.34,8.23,10.7,14 FILE a file in which the list of added hills is stored=HILLS_psi3_5
metaD_omega3_5: METADUsed to performed metadynamics on one or more collective variables. More details ARGthe labels of the scalars on which the bias will act=omega3_5 TAUin well tempered metadynamics, sets height to (k_B Delta T*pace*timestep)/tau=4.0 PACEthe frequency for hill addition=500 SIGMAthe widths of the Gaussian hills=0.35 GRID_MINthe lower bounds for the grid=-pi GRID_MAXthe upper bounds for the grid=pi GRID_BINthe number of bins for the grid=200 TEMPthe system temperature - this is only needed if you are doing well-tempered metadynamics=310.15 RECTlist of bias factors for all the replicas=1,1.2,1.46,1.82,2.3,2.94,3.78,4.89,6.34,8.23,10.7,14 FILE a file in which the list of added hills is stored=HILLS_omega3_5
#
metaD_phi2_6: METADUsed to performed metadynamics on one or more collective variables. More details ARGthe labels of the scalars on which the bias will act=phi2_6 TAUin well tempered metadynamics, sets height to (k_B Delta T*pace*timestep)/tau=4.0 PACEthe frequency for hill addition=500 SIGMAthe widths of the Gaussian hills=0.35 GRID_MINthe lower bounds for the grid=-pi GRID_MAXthe upper bounds for the grid=pi GRID_BINthe number of bins for the grid=200 TEMPthe system temperature - this is only needed if you are doing well-tempered metadynamics=310.15 RECTlist of bias factors for all the replicas=1,1.2,1.46,1.82,2.3,2.94,3.78,4.89,6.34,8.23,10.7,14 FILE a file in which the list of added hills is stored=HILLS_phi2_6
metaD_psi2_6: METADUsed to performed metadynamics on one or more collective variables. More details ARGthe labels of the scalars on which the bias will act=psi2_6 TAUin well tempered metadynamics, sets height to (k_B Delta T*pace*timestep)/tau=4.0 PACEthe frequency for hill addition=500 SIGMAthe widths of the Gaussian hills=0.35 GRID_MINthe lower bounds for the grid=-pi GRID_MAXthe upper bounds for the grid=pi GRID_BINthe number of bins for the grid=200 TEMPthe system temperature - this is only needed if you are doing well-tempered metadynamics=310.15 RECTlist of bias factors for all the replicas=1,1.2,1.46,1.82,2.3,2.94,3.78,4.89,6.34,8.23,10.7,14 FILE a file in which the list of added hills is stored=HILLS_psi2_6
#
metaD_phi6_7: METADUsed to performed metadynamics on one or more collective variables. More details ARGthe labels of the scalars on which the bias will act=phi6_7 TAUin well tempered metadynamics, sets height to (k_B Delta T*pace*timestep)/tau=4.0 PACEthe frequency for hill addition=500 SIGMAthe widths of the Gaussian hills=0.35 GRID_MINthe lower bounds for the grid=-pi GRID_MAXthe upper bounds for the grid=pi GRID_BINthe number of bins for the grid=200 TEMPthe system temperature - this is only needed if you are doing well-tempered metadynamics=310.15 RECTlist of bias factors for all the replicas=1,1.2,1.46,1.82,2.3,2.94,3.78,4.89,6.34,8.23,10.7,14 FILE a file in which the list of added hills is stored=HILLS_phi6_7
metaD_psi6_7: METADUsed to performed metadynamics on one or more collective variables. More details ARGthe labels of the scalars on which the bias will act=psi6_7 TAUin well tempered metadynamics, sets height to (k_B Delta T*pace*timestep)/tau=4.0 PACEthe frequency for hill addition=500 SIGMAthe widths of the Gaussian hills=0.35 GRID_MINthe lower bounds for the grid=-pi GRID_MAXthe upper bounds for the grid=pi GRID_BINthe number of bins for the grid=200 TEMPthe system temperature - this is only needed if you are doing well-tempered metadynamics=310.15 RECTlist of bias factors for all the replicas=1,1.2,1.46,1.82,2.3,2.94,3.78,4.89,6.34,8.23,10.7,14 FILE a file in which the list of added hills is stored=HILLS_psi6_7
#
#
PRINTPrint quantities to a file. More details ARGthe labels of the values that you would like to print to the file=phi1_2,psi1_2,phi2_3,psi2_3,omega2_3,phi3_4,psi3_4,phi3_5,psi3_5,omega3_5,phi2_6,psi2_6,phi6_7,psi6_7 STRIDE the frequency with which the quantities of interest should be output=4000 FILEthe name of the file on which to output these quantities=COLVAR
#
PRINTPrint quantities to a file. More details ARGthe labels of the values that you would like to print to the file=puck1.theta,puck2.theta,puck3.theta,puck4.theta,puck5.theta,puck6.theta,puck7.theta,puck1.phi,puck2.phi,puck3.phi,puck4.phi,puck5.phi,puck6.phi,puck7.phi STRIDE the frequency with which the quantities of interest should be output=4000 FILEthe name of the file on which to output these quantities=COLVAR_theta
#